Bibliography

[1] Amatulli, G., Trombetti, M. and Peréz-Cabello, F.2005 Using decision tree analysis to assess variable feature selection for fuel model mapping, In: Juan de la Riva, Fernando Perez-Cabello and Emilio Chuvieco (Editors), 5 th International workshop on remote Sensing and GIS Applications to Forest Fire Management: Fire Effects Assessment. June 16-18th, 2005 Zaragoza (Spain). 65-69234, Supplement 1, Page S228. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J., 1984. Classification and Regression Trees, Wadsworth and Brooks Publishing, Monterey, California.

[2] ArcFire project, 2010. A raison d’etre of the ArcFIRE platform. Greek Defence News, Issue: April 2010VOL.X-No.4.

[3] Arroyo, L., Healey, S., Cohen, W., Cocero, D., Manzanera, J. A. 2005. Regional fuel mapping using an object-oriented Classification of Quickbird imagery. In: Proceedings of NARGIS 2005 - Applications in tropical spatial science. 4th - 7th July 2005 Charles Darwin University, Darwin, NT, Australia.

[4] Arroyo, L.A., Healey, S.P., Cohen, W.B., Cocero, D., Manzanera, J.A., 2006. Using object-oriented classification and high resolution imagery to map fuel types in a Mediterrranean region, Journal of Geophysical Research, Vol.111.

[5] Arroyo, L.A., Pascual, C., Manzanera, J.A., 2008. Fire models and methods to map fuel types: The role of remote sensing, Forest Ecology and Management, 256, pp. 1239-1252.

[6] Barbosa, P., Amatulli, G. Camia, A. Kucera, J., San-Miguel-Ayanz, J., Strobl, P. 2007. "European Forest Fire Information System (EFFIS), rapid management assessment: appraisal of burnt area maps in southern Europe using MODIS data (2003 to 2006), In: Proc. Wildfire2007 IV International Wildland Fire Conference. Seville, Spain 13-17 May.

[7] Bolstad, P.V. &Lillesand, T.M., 1992. Improved classification of forest vegetation in northern Wisconsin through a rule-basedcombination of soils, terrain, and LANDSAT Thematic Mapper data.Forest Sci. 38 (1): 5–20.

[8] Coulter, L., Stow, D., 2007. Classifying Vegetation Fire Fuels Using Multispectral Imagery and Lidar-derived Vegetation Height and Density. Proceedings of the 21st Biennial Workshop on Aerial Photography, Videography, and High Resolution Digital Imagery for Resource Assessment, Terra Haute, Indiana, May 2007. CD-ROM, 11 p.

[9] Dobrowski, S.Z., J.A. Greenberg, C.M. Ramirez, and S.L. Ustin. 2006. Improving image derived vegetation maps with regression based distribution modeling. Ecol. Model. 192:126-142.

[10] Eftichidis, G., Margaritis, E., Sfyris, A. and V.Varela, 1998. Fire management information system: FMIS. III International Conference on Forest Fire Research; 14th Conference on Fire and Forest Meteorology; Luso; 16/20 November 1998; Vol.2, pp. 2641-2642.

[11] ETC/BD 2006. The indicative Map of European Biogeographical Regions: methodology and development.http://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-2005/methodology-description-pdf-format/methodology-description-pdf-format/at_download/file.

[12] European Environmental Agency 2007. CLC2006 technical guidelines. Technical report No 17/2007. Luxembourg: Office for Official Publications of the European Communities, 2007, ISSN 1725–2237.

[13] Falkowski, M.J., Gessler. P.E., Morgan, P., Hudak, A.T., Smith A.M., 2005. Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling. For Ecol Manage 217(2-3): 129-46.

[14] FUELMAP project 2011. Final Classification and Mapping of EU Fuel Complexes. Deliverable 2. JRC-ITT/RFQ Reference 2008/S 116-153998 June 2011.

[15] García, M., Riaño, D., Chuvieco, E., Salas, J., Danson, F., 2011. Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules. Remote Sensing of Environment 115 (6): 1369-1379.

[16] Gensuo, J., Ingrid, J., Burke, C., Alexander F., Goetz, H., Merrill, R., Kaufmann, B., Kindel, C., 2006. Assessing spatial patterns of forest fuel using AVIRIS data. Remote Sensing of Environment 102 (3–4): 318-327.

[17] Giakoumakis, N.M., Gitas, I.Z., San-Miguel, J., 2002. Object-oriented classification modelling for fuel type mapping in the Mediterranean, using LANDSAT TM and IKONOS imagery-preliminary results. In: Viegas (Eds.), Forest Fires Research & Wildland Fire Safety, Millpress, Rotterdam.

[18] Gitas, I., Mitri, G., Kazakis, G., Ghosn, D. and Xanthopoulos, G. 2006. Fuel type mapping in Anopolis, Crete by employing QuickBird imagery and object-based classification. Forest Ecology and Management. Volum.

[19] Gitas, I.Z., Mitri, G.H., Kazakis, G., Ghosn, D., Xanthopoulos, G., 2006. Fuel type mapping in Anapolis, Crete by employing QuickBird imagery and object-based classification. Forest Ecology and Management 234 (S1), S228. doi:10.1016/j.foreco. 2005.08.255.

[20] Greenberg, J.A., S.Z. Dobrowski, C.S. Ramirez, J.L. Tuil, and S. Ustin. 2006. Bottom-up approach to vegetation mapping of the Lake Tahoe Basin using hyperspatial image analysis. Photogramm. Eng. Rem. Sens. 72:581-589.

[21] Keane,R.E., R.Burgan, and J.Van Wagtendonk, 2001. Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling. Int. J. Wildland Fire 10:301-319.

[22] Koutsias, N., Karteris, M., 2003. Classification analysis of vegetation for delineating forest fire fuel complexes in a Mediterranean test site using satellite remote sensing and GIS. Int J Rem Sens, 24 (15), pp. 3093-3104.

[23] Lasaponara, R., Lanorte, A., 2007. On the capability of satellite VHR QuickBird data for fuel type mapping characterization in fragment landscape. Ecological Modelling 204, pp. 79-84.

[24] Lasaponara, R., Lanorte, A., 2007. Remotely sensed characterization of forest fuel types by using satellite ASTER data. International Journal of Applied Earth Observation and Geoinformation 9 (3): 225-234.

[25] Lasaponara,R., A.Lanorte, and S.Pignatti. 2006. Multiscale fuel type mapping in fragmented ecosystems: preliminary results from hyperspectral MIVIS and multispectral Landsat TM data. International Journal of Remote Sensing 27:587-593.

[26] López, Ana Sebastián., San-Miguel-Ayanz, J., Burgan, R.E., 2010. Integration of satellite sensor data, fuel type maps and meteorological observations for evaluation of forest fire risk at the pan-European scale. International Journal of Remote Sensing 23 (13): 2713-2719.

[27] Mallinis,G., Mitsopoulos, I.,Dimitrakopoulos,A., Gitas, I., Karteris. M., 2008. Integration of local scale fuel type mapping and fire behavior prediction using high spatial resolution imagery. Journal of Selected Topics in Applied Earth Observations 4: 230-238.

[28] Metzger, M.J., Bunce, R.G.H., Jongman, R.H.G., Mücher, C.A., Watkins, J.W., 2005. A climatic stratification of the environment of Europe. Global Ecology & Biogeography 14: 549–563.

[29] Miller, J.D., Danzer, S.R., Watts, J.M., Stone, S., Yool, S.R., 2003. Cluster analysis of structural stage classes to map wildland fuels in a Madrean ecosystem. J. Envrion. Manage. 68, 239–252.

[30] Mitri G.H. and Gitas I.Z., 2004. A semi-automated object-oriented model for burned area mapping in the Mediterranean region using LANDSAT-TM imagery. International Journal of Wildland Fire, Volume 13, Number 3, 367-376.

[31] Mücher, C.A., Bunce, R.G.H., Jongman, R.H.G., Klijn, J.A., Koomen, A.J.M., Metzger, M.J., Wascher, D.M., 2003. Identification and Characterisation of Environments and Landscapes in Europe. Alterra-rapport 832. Alterra, Wageningen.

[32] Nadeau, L.B., McRae, D.J. Jin, J-Z., 2005. Development of a national fuel-type map for Canada using fuzzy logic. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta. Information Report NOR-X-406.

[33] Nandy S., Joshi P.K., Das K.K., 2003. Journal of the Indian Society of Remote Sensing, vol31, No.4.

[34] Riaño, D., Chuvieco, E., Salas, F.J., Palacios-Orueta, A., Bastarrica, A., 2002. Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems. Canadian Journal of Forest Research 32, 1301-1315.

[35] Rikimaru, A., 1996. LANDSAT TM data processing guide for forest canopy density mapping and monitoring model. In: International Tropical Timber Organization (ITTO) workshop on utilization of remote sensing in site assessment and planning for rehabilitation of logged-over forest, Bangkok, Thailand, pp. 1–8.

[36] Rikimaru A. Roy P.s., Miyatake S., 2002. Tropical forest cover density mapping. Tropical ecology 43, 39-47.

[37] Roberts, D.A., Dennison,P.E., Morais, M., Gardner, M.E., Regelbrugge, J., Ustin, S.L.,1999. Mapping wildfire fuels using imaging spectrometry along the wildland urban interface. In Proc. Joint Fire Sci. Conf. Workshop, Boise, ID, Jun. 17–19, vol. 1, pp. 212–223.

[38] Roekaerts, M., 2002. The Biogeographical Regions Map of Europe–Basic principles of its creation and overview of its development. European Environment Agency, Copenhagen, 17 p.

[39] Rollins, M.G., Keane, R.E., Parsons, R.A., 2004. Mapping fuels and fire regimes using remote sensing, ecosystem simulation, and gradient modeling. Ecol. Appl. 14, 75–95.

[40] Tanase, M.A., Gitas, I.Z., 2008. An Examination of the Effects of Spatial Resolution and Image Analysis Technique on Indirect Fuel Mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 1 (4): 220-229.

[41] Van Wagtendonk, J.W., and R.R.Root, 2003. The use of multi-temporal Landsat Normalized Difference Vegetation Index (NDVI) data for mapping fuel models in Yosemite National Park, USA. International Journal of Remote Sensing 24:1639-1651.

[42] Wilson, B.A., OW, C.F.Y., Heathcott, M., Milne, D., McCaffrey, T.M., Ghitter, G., Franklin, S.E., 1994. Landsat MSS classification of fire fuel types in Wood Buffalo National Park, Northern Canada. Global Ecol. Biogeogr. 4, 33–39.

[43] Wolter, P. T., Mladenoff, D. J., Host, G. E. & Crow, T. R., 1995. Improved forest classification in the northern Lake States using multitemporal LANDSAT imagery. Photogr. Eng. Remote Sensing61 (9): 1129–1143.

You are here: Home Project Reference Info Bibliography